ESTU 20 MV Tandem Accelerator

Test Negative Ion Injector

Middleton-type Sputter Duoplasmatron

The WNSL Facility is centered on the ESTU Tandem Van de Graaff generator

- •Max Terminal Voltage ~20 MV
- •Ion beams from H to U (including He)
- •Typical beam energies \sim 5 10 MeV/A (protons up to ~40 MeV)
- •A complete list of beams and typical currents is available on the WNSL web-site

Solar Cells

- •The accelerator feeds nine beam lines hosting a wide variety of state-of-the-art experimental apparatus
- •Beam available < 4,500 hours per year

· rugged

low cost

- reasonable resolution
- · charged particle detectors

Major Experimental Apparatus Available at the WNSL

- 1. YRAST Ball gamma-ray spectrometer
 - >3 % absolute efficiency Ge-detector array
 - 9 Segmented clover and 19 coaxial detectors Largest university-based Ge detector array

2. SASSYER

- High transmission efficiency gas filled magnetic separator coupled to the YRAST Ball gamma-ray array
- Very clean channel selection device
- Focal plane detectors include arrays of solar cells and DSSD

- · The New Yale Plunger Device is a state-of-the-art recoil distance plunger designed to measure short nuclear lifetimes (picoseconds to nanoseconds).
- · The SPEEDY frame accommodates up to nine clover Ge detectors

4. Moving Tape Collector for β-decay and mass studies

- For beta half-lives > 0.5 s.
- Fast Electronic Scintillation Timing (FEST) ... picosecond half-lives
- Gamma and beta measurements
- 5. g-factor measurements (Rutgers University)
 - Transient field method

6. SAMMY

 $7\ T$ superconducting solenoid magnet for g-factor and perturbed angular correlation studies

7. Enge Split pole magnetic spectrometer

- Astrophysics measurements
- The YLSA lamp shade array

8. ICE Ball

- An array of six mini-orange electron spectrometers designed (by J. Saladin) to measure Internal Conversion coefficients
- Variety of charged particle detectors including arrays of solar cells for heavy ion and alpha particle detection.
- 10. General Purpose Scattering Chamber
- 11. Test Ion-source for new beam development

Wright Nuclear Structure Laboratory

Yale University

New Haven

Connecticut

Contact Persons

Scientific programs Accelerator operations

Con Beausang Jeff Ashenfelter 203 432 5197 203 432 5790

•http://wnsl.physics.yale.edu

Faculty/Staff

Active in the In-house Program

Nuclear Structure Physics

- Prof. R. Casten (Laboratory Director)
- Prof. C. Beausang Dr. N.V. Zamfir
- Dr. J. Ressler Dr H Amro
- 4 Graduate Students
- 4 Undergraduate Students

- Prof. P. Parker Dr. J. Caggiano
- 3 Graduate students
- 2 Undergraduate students

Accelerator operations

- Jeff Ashenfelter (Operations)
- Tom Barker (Electronics)
- John Barris (Computers)
- Craig Miller (Machinist)
- 5 Technicians

